基于自适应多尺度散布熵的滚动轴承故障诊断方法

作者:李从志;郑近德;潘海洋;刘庆运 刊名:噪声与振动控制 上传者:张亮

【摘要】针对滚动轴承振动信号的非平稳、非线性特性,将一种新的衡量时间序列复杂性和不规则程度指标——散布熵(dispersionentropy,DE)引入到滚动轴承非线性故障特征提取,提出一种基于经验模态分解与DE相结合的自适应多尺度散布熵滚动轴承故障诊断方法。首先,采用经验模态分解对振动信号进行分解,得到若干不同尺度的本征模态函数;其次,计算每个本征模态函数的DE值;再次,将得到的DE值作为特征向量输入到基于支持向量机建立的多故障分类器进行训练和识别。最后,将提出的滚动轴承故障诊断方法应用于试验数据分析,结果表明,提出的方法能准确地识别滚动轴承故障类型。

全文阅读

Vol 38 No.5 Oct. 2018 噪 声 与 振 动 控 制 NOISE AND VIBRATION CONTROL 第38卷 第5期 2018年10月 文章编号:1006-1355(2018)05-0173-07 基于自适应多尺度散布熵的滚动轴承 故障诊断方法 李从志,郑近德,潘海洋,刘庆运 ( 安徽工业大学 机械工程学院,安徽 马鞍山 243032 ) 摘 要:针对滚动轴承振动信号的非平稳、非线性特性,将一种新的衡量时间序列复杂性和不规则程度指标——散 布熵(dispersion entropy,DE)引入到滚动轴承非线性故障特征提取,提出一种基于经验模态分解与DE相结合的自适 应多尺度散布熵滚动轴承故障诊断方法。首先,采用经验模态分解对振动信号进行分解,得到若干不同尺度的本征模 态函数;其次,计算每个本征模态函数的DE值;再次,将得到的DE值作为特征向量输入到基于支持向量机建立的多故 障分类器进行训练和识别。最后,将提出的滚动轴承故障诊断方法应用于试验数据分析,结果表明,提出的方法能准 确地识别滚动轴承故障类型。 关键词:振动与波;经验模态分解;多尺度;散布熵;滚动轴承;故障诊断 中图分类号:TN911.7;TH165.3 文献标志码:A DOI编码:10.3969/j.issn.1006-1355.2018.05.031 Fault Diagnosis Method of Rolling Bearings based on Adaptive Multi-scale Dispersion Entropy LI Congzhi , ZHENG Jinde , PAN Haiyang , LIU Qingyun ( School of Mechanical Engineering, Anhui University of Technology, Ma’anshan 243032, Anhui China ) Abstract : Aiming at the non-stability and non-linearity of the vibration signals of rolling bearings, a new parameter called dispersion entropy (DE), which measures the complexity and irregularity of time series, is introduced into the nonlinear fault feature extraction of the rolling bearings. On this basis, the fault diagnosis method of rolling bearings based on the adaptive multi-scale dispersion entropy (AMDE), which combines empirical mode decomposition (EMD) with the DE, is proposed. First of all, the EMD is used to adaptively decompose the vibration signal of the rolling bearings into several intrinsic mode functions (IMF) in different scales. And the DE value

参考文献

引证文献

问答

我要提问