一种新型的基于自适应遗传算法的粒子滤波算法

作者:汪荣贵;李孟敏;吴昊;沈法琳 刊名:中国科学技术大学学报 上传者:刘晓

【摘要】针对粒子滤波算法的退化以及粒子多样性减弱问题,设计了一种新的基于自适应遗传算法的粒子滤波算法.该算法首先用粒子的重要性权重来度量其适应度值,依据粒子的适应度值自适应确定粒子进行遗传操作的概率;然后对选出的粒子实施交叉、变异操作;最后重新评估粒子的适应度并进行状态估计.这种可自适应调节概率的遗传操作能对粒子进行移动,从而提升了粒子的多样性,并使得粒子都能分布在状态的后验概率密度分布的周围.实验结果表明,该算法可有效提高非线性系统状态的估计精度,尤其在系统状态发生突变时,可以得到较好的估计精度.

参考文献

引证文献

问答

我要提问