反
馈
【摘要】本发明公开了一种基于频繁主题集偏好的学术论文推荐方法,该模型在预测未知评分时,对包含频繁主题集的论文给予一定程度的偏重,频繁出现的主题集合通常代表学术研究的热点,从而凸显包含研究热点的学术论文的价值。该模型首先对语料库进行建模处理,得到论文在主题上的概率分布;从而挖掘出频繁出现的主题集合;最后在协同主题回归模型中融入频繁主题集对推荐结果的影响。本发明学术论文推荐算法考虑到频繁主题集在用户选择论文时的影响,提出基于频繁主题集偏好的协同主题回归模型,力求帮助用户找到更有价值的学术论文;在真实数据集上的实验证明,基于频繁主题集偏好的协同主题回归模型,对比PMF和CTR模型,在召回率和准确率上都有一定的提高。