基于深度卷积神经网络End-to-End模型的亲属关系认证算法

作者:胡正平;郭增洁;王蒙;孙德刚;任大伟 刊名:模式识别与人工智能 上传者:罗红芬

【摘要】针对如何利用人脸图像进行亲属关系认证的问题,提出基于深度卷积神经网络End-to-End模型的亲属关系认证算法.首先,构建一个包含卷积层、全连接层和soft-max分类层的深度卷积神经网络模型.卷积层可以提取亲子图像的隐性特征,全连接层可以将提取的隐性特征映射为亲属关系认证的二分类问题,soft-max分类层可以直接判断该对样本是否具有亲属关系.然后,将成对的标记训练数据输入网络进行迭代,优化深度网络模型参数,直至损失曲线稳定.最后,利用训练完毕的深度网络模型对输入测试图像对进行分类判决,通过统计得到最终的准确率.在KinFaceWI和KinFaceWII数据库上的结果显示,相比以往的亲属关系认证算法,文中模型具有更好的性能.

参考文献

引证文献

问答

我要提问