基于图像特征的各向异性扩散去噪方法

作者:柯丹丹;蔡光程;曹倩倩 刊名:计算机应用 上传者:蒋纯

【摘要】对图像去噪滤波方法,J.Weickert模型未考虑图像光滑区域与其他图像特征的区别,在光滑区域的扩散也按照局部结构特征值进行,因而在光滑区域不可避免地产生虚假边缘,为此,提出一种改进的各向异性扩散方法。该方法首先用维纳滤波减弱噪声对图像的影响,再利用相干性正确判断边缘区域、光滑区域和T形拐角等图像特征,并依据图像特征设置相应区域扩散张量的特征值。实验结果表明,改进方法在消除噪声和保护边缘方面能取得较好的效果,并有效消除光滑区域的虚假边缘,可得到较高的峰值信噪比。

全文阅读

收稿日期:2011-08-22; 修回日期:2011-11-21。 基金项目: 云南省教育厅重点基金资助项目( 2006L001) ; 昆明理工大学人才基金资助项目( 2008-72) 。 作者简介: 柯丹丹( 1986 - ) ,女,河南驻马店人,硕士研究生,主要研究方向: 数字图像处理; 蔡光程( 1965 - ) ,男,云南文山人,教授,博士,主要研究方向: 数字图像处理、科学计算; 曹倩倩( 1987 - ) ,女,安徽宿州人,硕士研究生,主要研究方向: 数字图像处理。 文章编号:1001 -9081( 2012) 03 -0742 -04 doi:10. 3724/SP. J. 1087. 2012. 00742 基于图像特征的各向异性扩散去噪方法 柯丹丹,蔡光程* ,曹倩倩 ( 昆明理工大学 理学院,昆明 650500) ( * 通信作者电子邮箱 guangchenglg@126. com) 摘 要: 对图像去噪滤波方法,J. Weickert 模型未考虑图像光滑区域与其他图像特征的区别,在光滑区域的扩散也按照局部结构特征值进行,因而在光滑区域不可避免地产生虚假边缘,为此,提出一种改进的各向异性扩散方法。该方法首先用维纳滤波减弱噪声对图像的影响,再利用相干性正确判断边缘区域、光滑区域和 T 形拐角等图像特征,并依据图像特征设置相应区域扩散张量的特征值。实验结果表明,改进方法在消除噪声和保护边缘方面能取得较好的效果,并有效消除光滑区域的虚假边缘,可得到较高的峰值信噪比。 关键词: 图像特征; 各向异性扩散; 相干性; 扩散张量; 特征值中图分类号: TP391. 41 文献标志码: A Anisotropic diffusion denoising method based on image feature KE Dan-dan, CAI Guang-cheng * , CAO Qian-qian ( Faculty of Science, Kunming University of Science and Technology, Kunming Yunnan 650500, China) Abstract: As for the image denoising filter method, the model proposed by J. Weickert does not consider the distinctions between the smooth area and other image features. The diffusion in smooth area is also in accordance with the eigenvalues of local structure characteristics, thus inevitably producing false edges in smooth area. An improved anisotropic diffusion method was proposed. This method firstly used the Wiener filter to weaken the influence of noise on the image, then coherence was applied to judge image feature correctly, as edge region, smooth area, T-shape corner a

参考文献

引证文献

问答

我要提问